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Official purpose of this talk: to give an overview that

focuses on the state of the art in optimization and

includes a broad perspective on the field, particularly

as it relates to the DOE Office of Science mission

area. . . in 40 minutes!

[Not possible.]

My greatly reduced goal: To stir things up a bit.

Preemptive apology to optimization experts: the talk is

intended for a general audience, so please try to forgive me for

saying what you already know.



The broad policy context: Growing concerns that
U.S. science funding has become too conservative and
too risk-averse.

What’s wanted: innovative, high-risk/high-reward,

bold research.

National Academies’ Report Rising Above the

Gathering Storm (2007): the United States needs

creative, out-of-the-box transformational research

that could lead to new ways of fueling the nation and

its economy, as opposed to incremental research on

ideas that have already been developed.



Testimony to Congress by Arden Bement, Director of the

National Science Foundation, March 29, 2006:

“Creative disruption at the frontier and reduced lead-time

between discovery and application are the principal drivers of

global competition today. . . . Tinkering on the sidelines may be

important, but it is not what drives cutting-edge innovation”.

National Science Board report: “Transformative research is

. . . driven by ideas with the potential to radically change our

understanding of an important existing scientific or engineering

concept. . . [it is] characterized by its challenge to current

understanding or its pathway to new frontiers”.

NASA and NIH have expressed similar wishes to fund

transformational rather than incremental research.



And DOE wants transformational research also!

Raymond L. Orbach, Under Secretary for Science, Department

of Energy, March 9, 2006:

“The Department of Energy will need to fund and perform

science that is world-class, science that is at the far frontier of

human knowledge, what I call transformational science.

Transformational science is science that opens entirely new

avenues and methods for solving problems, that gives us

revolutionary new tools for mastering the challenges of our

world. . . . Incremental changes . . . will not suffice; we need

transformational discoveries and truly disruptive technologies”.



What do “transformational” and

“incremental” really mean?

Does it matter?

Are they just trendy buzzwords?

Should DOE-funded researchers care?



In the spirit of a thought exercise for this meeting: how does

optimization research (or any applied mathematics research)

stack up, using the ideas implicit in these statements?

• Are there genuinely new ideas with the potential to

transform our ability to analyze and solve difficult

problems?

• Is progress primarily incremental?

• To what extent are we recycling old ideas, shaping them

into new forms, and applying them to new problems?

• How does the interplay between theory and implementation

affect the prospects for transformational research?



A fundamental problem: distinguishing between
transformational and incremental research is difficult
at best, and may well be possible only with the
perspective of extended hindsight.

Three examples from optimization for us to ponder:

1. Linear programming methods, 1947–today, including the

interior-point revolution that began in 1984.

Enough hindsight to make reasonable judgments.

2. Filter methods for constrained optimization, 1996–today.

Some, but not yet enough, perspective.

3. Sparse recovery with the Dantzig selector, 2006–today.

Too early to judge, but a case to watch.



Linear programming (LP) means optimizing

(minimizing or maximizing) a linear function subject

to linear constraints.

A variety of mathematically equivalent forms, for

example:

minimize cT x, x ∈ Rn

subject to Ax ≥ b, A ∈ Rm×n



How important is linear programming?

In the real world, including Department of Energy applications,

its value is hundreds of billions of dollars per year!

Some fields where linear programming is central:

• Analysis of energy alternatives

• Risk analysis

• Transportation

• Communication

• Finance and banking

• Manufacturing

• Health and agriculture.



Linear programming is closely tied to mathematical research in

• convex geometry

• discrete mathematics; integer programming

• complexity theory

• game theory

• linear algebra and matrix theory.



George Dantzig’s great (transformational) invention in 1947:

the simplex method, which solves linear programs by starting

at a vertex and moving from vertex to vertex, reducing the

objective function (if we’re minimizing) as it goes.
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Until the mid-1980s, practitioners (very!) happily

used the simplex method to solve increasingly large

linear programs.

Why were they so happy?

Because the simplex method essentially always took

2n–3n steps to solve the problem, where n is the

number of variables, and each step took O(n2) or

fewer operations.

Thus, in practice, the simplex method behaved like a

fast polynomial-time algorithm.



However, starting in the 1960s when the study of computational

complexity took off, the simplex method’s success in practice

did not impress the theoretical computer science community,

who were concerned about its worst-case complexity.

Their unease was justified: in 1972, Klee and Minty produced

an n-variable linear program with 2n vertices for which the

textbook simplex method, if started at the “wrong” vertex,

visits every one of those 2n vertices.

The Klee–Minty and related examples show that the worst-case

complexity of the simplex method with all known pivot rules is

exponential—which should mean that the simplex method is a

VERY bad algorithm.



As a result, there was an intense search for a polynomial-time

linear programming method that, in theory, would be

inherently faster than the simplex method.

1979: Leonid Khachian, a 28-year-old mathematician in the

Soviet Union, defined the ellipsoid method, the first algorithm

to solve linear programs in polynomial time.

Khachian’s method is based on approaches for nonlinear

problems developed earlier by other Soviet mathematicians,

notably Shor, Yudin and Nemirovskii. It does not rely, as the

simplex method does, on highly specialized features of the

linear programming problem.

Wild excitement around the world—but numerical tests quickly

revealed that in practice Khachian’s algorithm is much, much

slower than the simplex method.



So how do we classify Khachian’s work?

Transformational? YES, definitely, even though the

ellipsoid method was not faster than simplex.

Incremental?? No.

Recycling?? To a limited extent.

Khachian’s contribution was highly disruptive, challenging

accepted ways of thinking about linear programming. And

although he used ideas developed by others, he applied them in

a new, unexpected, and (at the time) startling way.



1984: Narendra Karmarkar, a 28-year-old researcher

at Bell Labs, announced a polynomial-time linear

programming method stated to be consistently 50

times faster than the simplex method.

Details of his method and software were secret

(AT&T-confidential).

1985: Karmarkar’s algorithm was proved to be formally

equivalent to barrier methods for nonlinear optimization,

popular (but never used for LP) in the late 1960s. A Newton

barrier method was also shown to be competitive with the

simplex method on a range of problems.



How do we assess the interior-point revolution, begun

with Karmarkar’s work?

Transformational?? YES, definitely; continuous

optimization has changed tremendously since 1984.

Incremental?? Not Karmarkar’s work, but most other

work since 1984.

Recycling? Not Karmarkar’s seminal paper, but much

subsequent work.



The transformation wrought by Karmarkar was two-fold:

1. Since 1984, researchers have developed interior-point

methods for linear programming, quadratic programming,

nonlinear programming, etc., etc., and have devised new kinds

of optimization problems such as semidefinite programming.

Results from the 1960s have been re-analyzed, developing new

insights that had been overlooked.

2. Devotees of the simplex method, stunned by the challenge to

its previous unquestioned dominance, were highly motivated to

improve it, with remarkable results.



The cumulative power of incremental research is
clearly shown by the magnitude and extent of
performance improvements in the simplex method,
whose basic concept has not changed since 1947.

Bob Bixby, the original developer of CPLEX (commercial

software for linear and integer programming considered a

benchmark standard) summarized improvements in the simplex

method since 1984 in “Solving real-world linear programs: a

decade and more of progress” (2002).



Improvement: Steepest-edge pivot selection

The classic “textbook” simplex pivot selection strategy depends

on the scaling of the constraints.

The steepest-edge strategy (Goldfarb and Reid, 1977) produces

the greatest rate of reduction in the objective function along

any feasible edge. But it requires more calculation and was

widely viewed as impractical because the extra work did not

produce sufficiently better results.

It was revisited (recycled?) in the early 1990s, and today, for

very large linear programs, the steepest-edge strategy typically

reduces (significantly) the number of simplex iterations—but

not always!



Improvements in linear algebra, all “incremental” in some

sense:

• Dynamic LU factorization with threshold pivoting;

• Improved stable updates of the LU factorization;

• Taking advantage of “hyper-sparsity” so that the work is

linear in the number of elements “touched” during the

solves (hence approximately constant as problem size

grows);

• And many more.



Bixby’s numerical tests confirm the very significant cumulative

benefits of these and other improvements to the simplex

method.

680 linear programming models were tested, with m (the

number of equality constraints) up to 7 million, imposing a

time limit of 4 days per LP, using version 8.0 of CPLEX, and

machines and algorithms dating back to 1990.

m Number of LPs tested

> 0 680

> 10000 248

> 100000 73



Testing for algorithm only: Run old and new simplex

algorithms on new machine.

Algorithm only Speedup

Best simplex 960

Testing for hardware only: Run new simplex algorithms on old

and new machines.

Hardware only Speedup

Best simplex 800

Algorithmic speedup exceeds hardware speedup!

Further gains in simplex speed since 2002.



Overall, even for the largest problems, the best simplex is

approximately comparable with the barrier interior-point

method—sometimes much better, sometimes much worse,

sometimes similar.

Many puzzles remain.

Example: Solution times in seconds for two linear programs,

believed to be very similar in structure.

Version 1: approximately 5 million variables and 7 million

constraints

Version 2, with a similar structure: 750,000 constraints

Primal simplex Dual simplex Barrier

Version 1 1880 6413 5642

Version 2 1.8 × 106 48.3 28,161



Conclusions:

Linear programming methods are much, much better

than in 1984, and progress continues. Huge linear

programs formerly considered essentially impossible

can be solved rapidly and routinely today.

There is no uniformly best LP algorithm.

We can’t predict accurately which methods will do

well on which problems.

Note especially that the transformational research did
not sweep away and supersede all previous work!



A second example of transformational research:

Filter methods for constrained optimization

Problem: minimize f(x) subject to c(x) ≥ 0 and
h(x) = 0.

Since the 1970s, sequential quadratic programming (SQP)

methods have been a popular and effective solution technique,

using a Newton-based formulation that minimizes a quadratic

approximation to the Lagrangian function subject to

linearizations of the constraints, sometimes with trust-region

constraints.



A longstanding strategy for ensuring progress toward a solution

from an arbitrary starting point: each new SQP iterate is

required to reduce a merit function, a combination of the

objective function and the constraint violations, e.g.

M(x, ρ) = f(x) + ρv(x),

where v(x) is a measure of the constraint violations and ρ is a

penalty parameter.

Research on merit functions goes back to the 1970s, and there

are numerous variations.



Choosing the penalty parameter is often problematic.

In theory, SQP methods will converge if ρ is large enough, but

this does not provide guidance for selecting a concrete value for

ρ in an implementation.

If ρ is too small, the method may diverge; if ρ is too large, the

method may inefficiently creep along the constraint boundary.

The classic “Let the user decide” strategy is not effective since

most users have little or no intuition about a good value of the

penalty parameter for their problem. Default values may not

work well on badly scaled problems.



A turning point: a plenary lecture by Roger Fletcher at the

1996 SIAM Conference on Optimization describing work with

Sven Leyffer on using a filter to measure progress.

The appealing idea of a filter: view the question of accepting a

new iterate as a two-objective problem in which the goals are

to minimize both f(x) and v(x).

Using the concept of “domination” from multiobjective

optimization, the iterate xj dominates the iterate xi if

f(xj) ≤ f(xi) and v(xj) ≤ v(xi).

A filter F is a set of pairs [v(xi), f(xi)] in which no point

dominates any other point. A new iterate xk+1 is accepted only

if it is not dominated by any point in the current filter.
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Initial intuition presented by Fletcher: All points (v(x), f(x))

below and to the left of the filter are acceptable.

Fletcher’s talk was a transformational moment: a challenge to

the accepted paradigm.



Since then, it has turned out that refinements to the original

idea are needed to provide an efficient algorithmic tool.

1. A small “envelope” is added around the border of the filter,

and a new iterate xk+1 is acceptable if

vk+1 ≤ βvj or fk+1 ≤ fj − γvk+1,

for (vj , fj) ∈ F and for j = k, where 0 < β, γ < 1.

2. If the constraint violations become small, a sufficient

reduction condition on the objective function is imposed

similar to that in unconstrained optimization.

3. If the current point is too far from feasibility, an SQP-like

feasibility restoration phase is invoked.

Still a lively field of research!



Filter methods are the subject of active research, but after 11

years it’s fair to ask . . .

Was the idea of filter methods transformational?

Yes. Fletcher, Leyffer, and Toint received the 2006 Lagrange

prize in continuous optimization from the Mathematical

Programming Society and SIAM for work on filter methods.

Recent incremental developments have applied filter techniques

to interior-point methods, nonlinear equations, nonsmooth

optimization, and non-derivative optimization. See A brief

history of filter methods, R. Fletcher, S. Leyffer, and Ph. Toint

(2006), preprint ANL MCS-P1372-0906.

Have filter methods made merit functions obsolete?

No. Researchers are continuing to examine several “old”

merit functions, with good results. (Note recycling.)



The third and final example:

Sparse recovery, a statistics problem closely related to
optimization.

Consider estimating a p-dimensional parameter β in the linear

model

y = Xβ + z,

where y is an n-vector of observations, X is an n × p predictor

matrix, and z contains stochastic measurement errors.

Motivation: In many statistical applications, the number p of

variables or parameters is much larger than n, the number of

observations.

Examples: imaging, tomography, genomics, signal processing.

This seems initially to be hopeless—how can β be estimated

reliably if p � n??



Recent work has shown, surprisingly, that this may be possible

with high probability when β is known to be structured in the

sense of being sparse or compressible.

A widely publicized suggestion of Candès and Tao: the Dantzig

selector (named after George Dantzig), a new estimator that

solves a convex `1 optimization problem that can be recast in

various ways as a linear program.

One Dantzig selector formulation:

minimize
β,r

‖β‖1 subject to ‖XT r‖∞ ≤ λ, r = y − Xβ.



No time to discuss details!

See, for example:

E. Candès and T. Tao (2004), “Near optimal signal recovery

from random projections: universal encoding strategies”, IEEE

Transactions on Information Theory 52, 5406–5425.

E. Candès and T. Tao, “The Dantzig selector: statistical

estimation when p is much larger than n”, Annals of Statistics,

to appear.

D. Donoho (2006), “Compressed sensing”, IEEE Transactions

on Information Theory 52, 1289–1306.



Great excitement about this research. . .

“This work is nothing short of revolutionary; it

promises to take the field to a whole new level”

John Cozzens, National Science Foundation

The Candès–Tao paper (which has not even appeared
in a journal) has widely been called a “breakthrough”,
“innovative”, “seminal”, and “remarkable”.



Transformational ideas?

So it would appear!

Clearly superior in efficiency to other approaches,

such as basis pursuit denoising?

Not yet clear.

Friedlander and Saunders (2007) show that computation of the

Dantzig selector using general-purpose linear programming

software can be very expensive.

More time is needed for careful judgment.



The conclusions of this talk are mostly for you to

draw, but here are a few thoughts:

• Radically new ideas are crucial, but remember

that transformational research can involve

recycling in the sense that it applies “old” ideas in

an unexpected setting;

• Those who support science should not dismiss or

underestimate the power of incremental research

(e.g., simplex improvements), especially when

done by very smart researchers;

• Transformational research does not necessarily

sweep away everything from the past.


